STUDIES ON POLYPEPTIDE CHAIN INITIATION FACTORS F, AND F,

Rajarshi MAZUMDER

Department of Biochemistry, New York University School of Medicine, 550 First Avenue, New York, N.Y. 10016, USA

Received 5 July 1971

1. Introduction

AUG-directed binding of fMet-tRNA $_F$ to $E.\ coli$ ribosomes needs initiation factors F_1 and F_2 . However, while considerable binding may occur in the presence of F_2 alone, e.g., at 0° , F_1 by itself is completely inactive [1]. Although the precise mechanism by which F_1 increases binding is not clear, the present study indicates that this factor may function by increasing the affinity of AUG for the ribosome.

In further work on F_2 it was found that chromatography of a crude fraction (prepared from 1 M NH₄Cl wash of *E. coli* Q₁₃ ribosomes) on phosphocellulose columns resulted in the elution of F_2 as two major peaks of activity (F_2 a and F_2 b). At 37°, F_2 a is much less effective than F_2 b in promoting the formation of an initiation complex, directed by AUG, GUG or MS2 RNA.

2. Materials and methods

Phosphocellulose (P 11, capacity 7.4 meq/gm), was a product of Whatman. AUG was purchased from Miles Laboratories. Ribosomal binding of fMet(14 C)~tRNA and fMet-puromycin synthesis was measured as described previously [1]. Highly purified F_2 , F_1 and F_3 were prepared as described previously [2–4]. Unless mentioned otherwise, F_2 a and F_2 b were routinely assayed at 0° without F_1 [1]. F_2 a and F_2 b were prepared as follows. Crude ribosomes from E. coli Q_{13} were washed with 1 M NH₄Cl and the wash was precipitated with ammonium sulfate. The precipitate obtained between 30 and 50% saturation was dissolved in a minimal volume of buffer containing

50% glycerol, 20 mM Tris-HCl, pH 7.8, 0.2 mM Mg^{2+} , 20 mM NH_4Cl , 1 mM dithiothreitol (DTT) and stored at -20° . Prior to chromatography, this fraction was dialyzed against 20 mM Tris-HCl, pH 7.4, 1 mM DTT (Buffer A) for 3 hr. Any precipitate formed during dialysis was discarded. 3.3 ml of the dialyzed solution, containing about 92 mg protein, was applied to a phosphocellulose column (0.8 \times 25 cm) previously equilibrated with Buffer A. A part (15–20%) of the applied F_2 activity (F_2 a) was eluted with Buffer A along with the bulk of the protein. The column was then eluted with 250 mM NH_4Cl , 50 mM Tris-HCl, pH 7.4, 1 mM DTT (Buffer B). About 30% of

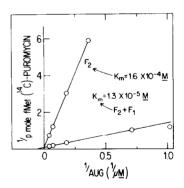


Fig. 1. Determination of K_m for AUG. Assay mixtures contained (in a final volume of 0.05 ml), NH₄Cl, 130 mM; Tris-HCl buffer, pH 7.2, 50 mM; magnesium acetate, 4 mM; DTT, 5 mM; GTP, 0.2 mM; fMet~tRNA labelled with ¹⁴C methionine, 100 pmole (24,000 cpm); ribosomes, 2.2 A₂₆₀ units; puromycin, 1 mM; F₂, 1.1 μ g and when present, F₁, 0.5 μ g. Reaction was started by the addition of ribosomes. Incubation was for 15 min at 25°. Blanks without AUG subtracted from all values.

Table 1

Activity of F₂a and F₂b with trinucleotide codons in the presence of F₁.

			Met(¹⁴) d (pmo	C)~tRNA les)		Activity remaining at 37° (%)	
		F ₂	₂ a	F	₂ b	F ₂ a	F ₂ b
Expt.		25°	37°	25°	37°		
1	AUG	3.48	0.53	3.66	2.26	15	62
2	GUG	1.15	0.02	1.78	0.59	1	33

Assay mixtures contained (in a final volume of 0.05 ml): Tris-HCl buffer, pH 7.3, 50 mM; NH₄Cl, 100 mM; magnesium acetate, 6 mM; DTT, 5 mM; GTP, 0.2 mM; fMet(14 C)~tRNA, 20 pmole (360 cpm/pmole); ribosomes, 2.75 A₂₆₀ units; either AUG (expt. 1) or GUG (expt. 2), 0.05 A₂₆₀ units; F₂a, 40 μ g (expt. 1), 25 μ g (expt. 2); F₂b, 3.9 μ g (expt. 1), 2.2 μ g (expt. 2) and F₁, 1.5 μ g. Ribosomes were added last. Incubation was for 15 min at the indicated temperatures. Blanks without F₂ at both temperatures, 0.42 (expt. 1) and 0.32 (expt. 2) pmole, subtracted.

Table 2 Activity of F_2a and F_2b with MS2 RNA in the presence of F_1 and F_3 .

	Net fMet(¹⁴ C)~tRNA bound (pmole)					
	25° (AUG)	37° (MS2 RNA)	Activity remaining at 37° (%)			
F ₂ a	5.0	0.63	13			
F ₂ b	4.15	2.27	55			

Conditions similar to those of table 1 with F_3 , 1 μg ; either F_2a , 18 μg or F_2b , 2 μg and either AUG, 0.05 or MS2 RNA, 0.96 A_{260} units. Incubation was for 15 min as indicated. Blanks without F_2 (1.41 pmole at 25° and 0.65 pmole at 37°) subtracted. MS2 RNA cannot be used at 25° because of its high degree of ordered structure at this temperature.

the applied F_2 activity was eluted as a peak with Buffer B (F_2b) . A minor peak of F_2 activity eluting ahead of F_2b has also been observed. It may represent a mixture of F_2a and F_2b . F_2 is very sensitive and is easily inactivated; this may account for the low total recovery of F_2 activity. When necessary, F_2a was concentrated by dialysis overnight against

a solution (adjusted to pH 7.5) containing 50 mM Tris-HCl, 20 mM NH₄Cl, 2 mM Mg²⁺, 10 mM 2-mercaptoethanol and ammonium sulfate at 0.7 saturation (Buffer C). The precipitated protein was collected by centrifugation, dissolved in a minimal volume of Buffer B, dialyzed against the same buffer for 3 hr, diluted with an equal volume of glycerol and stored at -20° . F₂b was concentrated by ultrafiltration, made 50% with respect to glycerol and stored at -20° . For some experiments (table 2), F₂a and F₂b were chromatographed successively on DEAE-cellulose and Sephadex G-200.

3. Results and discussion

3.1. Effect of F_1 on the ribosomal affinity of AUG

The rate of the fMet-puromycin reaction as a function of AUG concentration was studied with F_2 alone and F_2 plus F_1 . The results plotted according to Lineweaver and Burk [5] are shown in fig. 1. Analysis of such a plot reveals that F_1 lowers the K_m for AUG by approximately a factor of 10 without significantly affecting the $V_{\rm max}$. In this respect, F_1 resembles the S factor which is involved in the release of ribosome-bound fMet-tRNA as formylmethionine [6]. It was shown that, although S factor lowered the K_m for release codons in the presence of either R_1 or R_2 , this factor by itself was ineffective in causing release.

3.2. Properties of F_2 a and F_2 b

Both F₂a and F₂b need sulfhydryl groups for activity as judged by their sensitivity to p-hydroxymercuribenzoate [7]. Table 1 summarizes results of experiments in which the binding of fMet-tRNA to ribosome was studied at 25° and 37° using F₁ with either F2a or F2b. Both F2a and F2b were active at 25° in promoting binding directed by AUG or GUG. However, at 37°, F₂a was much less active than F₂b with either codon. Similar results were obtained when the ribosomal binding of fMet-tRNA was studied at 37° using the natural messenger, MS2 RNA (table 2). In this experiment, F₃ was also included in assay samples since little MS2 RNA-directed binding of fMet-tRNA occurs in the absence of this factor. The results suggest that F2a differs from F2b in that it has relatively little activity at 37° in promoting formation of an initiation complex directed by AUG, GUG or MS2 RNA.

Since the fraction of total F_2 present as F_2 a is likely to be functionally inactive at 37° , conversion of F_2 b to F_2 a may provide a means for controlling the rate of protein synthesis. The possibility that F_2 b is converted to the apparently more acidic F_2 a by phosphorylation or adenylylation and the question whether the relative proportion of F_2 a increases under conditions where the rate of protein synthesis slows down, e.g., by amino-acid deprivation of an auxotrophic strain, is currently under investigation.

Acknowledgements

I wish to thank Dr. S. Ochoa for his interest. GUG was a generous gift of Dr. M.W. Nirenberg, National Institutes of Health, Bethesda, Maryland. Purified F_1 and F_3 were kindly provided by Dr. M.A.G. Sillero and S. Sabol. The skillful technical assistance of

Miss N. Paparella is acknowledged. This work was supported by N.I.H. and American Cancer Society funds.

References

- [1] Y.-B. Chae, R. Mazumder and S. Ochoa, Proc. Natl. Acad. Sci. U.S. 63 (1969) 828.
- [2] Y.-B. Chae, R. Mazumder and S. Ochoa, Proc. Natl. Acad. Sci. U.S. 62 (1969) 1181.
- [3] S. Lee-Huang, M.A.G. Sillero and S. Ochoa, European J. Biochem. 18 (1971) 536.
- [4] S. Sabol, M.A.G. Sillero, K. Iwasaki and S. Ochoa, Nature 228 (1970) 1269.
- [5] H. Lineweaver and P. Burk, J. Amer. Chem. Soc. 56 (1934) 658.
- [6] T. Caskey, E. Scolnick, R. Tompkins, J. Goldstein and G. Milman, Cold Spring Harbor Symp. Quant. Biol. 34 (1969) 479.
- [7] R. Mazumder, Y.-B. Chae and S. Ochoa, Proc. Natl. Acad. Sci. U.S. 63 (1960) 98.